
Towards Efficiently Solving Quantum Traveling Salesman Problem

Debabrata Goswami, Harish Karnick, Prateek Jain, and Hemanta K. Maji
Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur-208 016

(Dated: November 2, 2004)

We present a framework for efficiently solving Approximate Traveling Salesman
Problem (Approximate TSP) for Quantum Computing Models. Existing
representations of TSP introduce extra states which do not correspond to any
permutation. We present an efficient and intuitive encoding for TSP in quantum
computing paradigm. Using this representation and assuming a Gaussian distribution
on tour-lengths, we give an algorithm to solve Approximate TSP (Euclidean) within
BQP resource bounds. Generalizing this strategy for any distribution, we present an
oracle based Quantum Algorithm to solve Approximate TSP. We present a realization
of the oracle in the quantum counterpart of PP.

03.67.Lx

Introduction—Quadratic speed up achieved by Grover’s1 search algorithm for
unstructured database is optimal2, ,3 4. Direct attempts to solve NP-complete problems
are bound to fail unless some structure is identified in the search space. Exponential
speedup in many problems is achieved by exploiting some underlying property of the
search space, for example, Shor’s Factorization Algorithm5, Deutsch and Jozsa’s
algorithm6, Childs et. al.7 random walk algorithm.

Any search algorithm to solve Approximate Traveling Salesman Problem8
(Approximate TSP) is bound to fail unless it uses some additional information about
the search space. The best known classical algorithms for Euclidean Approximate
TSP are Christofides’ algorithm9 and PTAS10. Farhi et. al.11,12 proposed a quantum
optimization technique for Satisfiability problem using adiabatic evolution, but this
method is not able to guarantee bounded error in polynomial time. Hogg et. al.13, ,14 15
have proposed a quantum optimization technique using mixing operators. They have
simulated it for Satisfiability Problem and Approximate TSP. The method performs
well on average, but a bounded error in polynomial time cannot be guaranteed by this
algorithm. Hogg et. al. also propose an encoding that introduces states which do not
correspond to any permutation. So, efficient representation of TSP is another issue
that needs to be addressed.

We propose a new encoding scheme for permutations which can be
recursively generated. Using this representation scheme and assuming a Gaussian
distribution on the tour lengths we present a BQP algorithm to solve Approximate
TSP (Euclidian). We propose another algorithm to solve Approximate TSP using an
oracle which answers queries about tour-length distribution. This algorithm gives
correct answers with high probability but is not in BQP. However, this algorithm has
the advantage that it does not assume any distribution on the tour lengths.

Encoding Scheme for TSP—Given a graph on vertices, every permutation of the set
{1,2,…,n} defines a possible Hamiltonian cycle over the graph. So, if we have an
entanglement of all possible permutations, information about whether a permutation
defines a Hamiltonian cycle over the graph or not can be associated with it. If a

n

permutation represents a valid Hamiltonian cycle then we associate its tour length
with the permutation. We establish a bijection between the set of all permutations of
{ }1 2 … n, , , and the set 1 2{(, ,...,) |1 1 }n ia a a a i i i n≤ ≤ ∀ ≤ ≤ , which we will call the
encoding set. We give an inductive definition of this mapping function. For the base
case of , the function maps 1n = 1(1a)= to the permutation 1. For n>1, it maps
(a1,a2,…,an) in the following manner:

1. From the elements ()1 2 1na a … a −, , , , create the corresponding permutation of the
set {1,2,…,n-1}.

2. Insert between the (an n-1)-th and an-th elements of the previous permutation
(for we insert in the beginning and for 1na = na n= we insert it at the end).

A simple classical algorithm can be designed which implements this mapping.
So, there exists a quantum algorithm to implement this mapping in polynomial time
(using synchronization lemma

2O n⎛ ⎞
⎜ ⎟
⎝ ⎠

16).
Note that if the i-th elements differ in two encodings then is inserted at

different positions and subsequent permutations which are generated are different.
Therefore, this function is one-one. Moreover, size of the range and domain are equal
(). Thus, the function is a bijection and it suffices to obtain an entanglement of all
elements in the encoding set.

i

n= !

Circuit to generate entanglement of all Permutations’ encodings—In order to
generate entanglement of all possible encodings, we use sets of registers n 1 nR …R, to
store information related to the entries ()1 na … a, , . The -th register (i iR) has
qubits.

1i +

i jR , represents the -th qubit of i -th register. At any given time, exactly one
of the qubits in a register is in state

j

1 and rest are in state 0 . If 1i jR , = and other
qubits in -th register are in i 0 state, then we write 1iR j= − (this means that

). Our initial state is: 1ia j= −
()

1 1 0 ... 0
n t−

Φ = (base condition of the function)

After t iterations we will have the state (ignoring the normalization constant):

1

1

()
1

1
1

()
1

1
1 1

0 ... 0

... 0 ... 0

t

t

n t
t

t t
a a t

n t
t

t
a a

a … a

a … a

−

= =

−

= =

⎛ ⎞⎛ ⎞
Φ = ⊗ ⊗⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

∑ ∑

∑ ∑

We apply the gate Gt+1 to obtain 1t+Φ from tΦ . Gate Gt+1 can be described by:

,1

1,1

1, 1,

Triggered by: 0

1
Effects thechange: 1 1

t

t

t j t j

R

R
R R j j t

+

+ +

=

=

→¬ ∀ ≤ ≤ +

where 1t jR + ,¬ represents complement of 1t jR + , . 1 0tR , = implies that the values of
have been set and

ta

1 1 1tR + , = implies that values of 1ta + are not yet decided. So, this

step changes 1tR + from 0 to the state
1

1

1
1t

t

t
a

a
+

+

+
=
∑ in the (1)-tht + iteration. At the end

of iterations, we obtain the state representing the entanglement of all possible
permutation encodings:

n

1

1

1

1
1 1

1

1
1 1

...

n

n

n

n n
a a

n

n
a a

a … a

a … a

= =

= =

⎛ ⎞⎛ ⎞
Φ = ⊗ ⊗⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

∑ ∑

∑ ∑

We modify the previous set of gates G to obtain gates which result in a final

wave where result in a final wave where the probability of observing a particular
permutation is proportional to . The G gates transformed a
permutation of t points into an equal superposition of all possible permutations
resulting from inserting the (t+1)-th point. Given a permutation of points, we know
the exact increment in each tour due to the insertion of the (t+1)-th point at each of

 possible positions (in all cases the length increases because the space is
Euclidean). So, we can redistribute the probabilities in the resulting states such
that they are proportional to . These gates, after iterations, result in a
superposition of the encoding set, such that the probability of observing a particular
encoding is proportional to . So, we obtain the wave:

-tour length ,α α >1

t

1t +
1t +

incrementα − n

-tour lengthα length

is a permutation

a τ

τ

τ−∑ .

Algorithm for solving Approximate TSP assuming a distribution—Given a graph, with
a Euclidean norm, we scale it to fit within the smallest axis parallel square. Since
there is no smaller square which can contain the graph completely, there must be at
least two vertices on opposite sides of the square. We now scale the graph such that
this square is a unit square. Observe the following two properties for such graphs in
unit squares:

1. Tour lengths are : Maximum edge length in a unit square is ()O n 2≤ , so the

maximum tour-length that is possible in a normalized graph is 2n≤ . This
bound is tight and nothing better can be obtained (consider points in a
unit square with all vertices lying on one vertex of the square and all even
vertices lying on the diagonally opposite vertex of the square. Then any tour
which alternately chooses an odd numbered and even numbered vertex is of
length

2n = k

2n).

2. Tour lengths are : Without loss of generality, assume that the two
vertices which lie on opposite sides of the square are on edges which are
parallel to the X-axis. Consider any tour, and project its edges on the Y-axis.
Edge lengths are greater than their projections, so length of any tour is greater
than its projection on the Y-axis. The projected tour has length 2, s all tours
have tour length . One can also verify that that this bound is tight
(consider n points lying on a straight line parallel to the Y-axis and the X-
coordinates of the vertices of a tour form a bitonic sequence, then it has length
2).

(1)Ω

2≥

Consider a fully connected Euclidean TSP instance. We assume that the tour-

length distribution is Gaussian with the hump of the distribution lying between the
minimum and maximum tour-lengths. For this TSP instance we prepare the wave

length

is a permutation

τ
α

τ

α τ−Ψ = ∑

Given an ε close to 0, we would like to choose α such that the probability of
observing a tour with tour-length (by reading αΨ) within (1)ε+ of optimal tour-
length is greater than a non-zero constant. Assume is a Gaussian centered at
some point in the range .

()g x

min maxx x⎡ ⎤
⎥⎦⎢⎣ , minx is minimum tour-length and maxx is

maximum tour length. α is a suitable parameter to be decided in the prepared wave.
The probability of observing a tour with tour-length at most ()1 ε+ times the optimal
tour length is a function of α and could be expressed as:

(1)
()

()

min

min

max

min

x x

x
x x

x

g x dx

g x dx

ε
α

σ
α

+ −

−
=
∫
∫

We will make two assumptions regarding the nature of σ (the variance of the
Gaussian). We will assume that σ grows slower than a polynomial in and 1n σ/
grows slower than a polynomial in . Now, if we substitute a new variable for n x σ/ ,
then we get the following properties in the new coordinate system:

1. '()p nσ ≤ eventually: So 2
'() ()min minx x

p n p n
≥ ⇒ ≥

1 in new coordinate

system.

2. 1 '()q n
σ
≤ eventually: So 2 '() ()max maxx q n x q n≤ ⇒ ≤ in new coordinate

system.
Henceforth, we will assume that 1σ = and prove our results with the above
constraints.

Now, observe that , where (ln) 2x a xe eα − − −= = kx 02 lnk a= > . The function
that we intend to integrate becomes

22kx xe e− − 2 ()k x ke e− +=
2

. Multiplying by xα− gives
another Gaussian with center shifted to the left by . As 0k > α varies, k varies with
it and the resulting set of functions is the set of all Gaussians shifted left from the
original one. Now, we reduce the problem to analyzing the following function:

()

2

2
()

min

max min

x x x

x
x x x x

x

e dx
h x

e dx

ε+ −

+ − −
= ∫
∫

We are justified in doing so, because serves to shift the center of to the left
by . This new center is taken as 0 and

2kxe− ()g x
k minx goes to minx k− in the new co-ordinate

frame, which is taken as the variable to account for variable in the original
problem.

x k

Now, we set , i.e. we choose such that the center of the shifted
Gaussian is at

0x = k
minx of the original problem. So, the shift is ()()O q n . Therefore,

()()2 O q nke eα = = . We recall the two inequalities 1 ()minx p n≥ / and ()maxx q n≤ (where
 and are fixed polynomials). Now, we see: ()p n ()q n

2 2

2 2

2

2

2

0
()

0 0
()

0 0

2()

22 ()

2

(0)

1
()1

1when 0 1
4

min

max

x x xp n

x q nx x

p n

q n

x

e dx e dx
h

e dx e dx

e
p ne

x x e x

εε

ε

ε

ε

+ − −

− −

−

−

−

> ≥

−
> ≥

−
⎛ ⎞→ < ⇒ ≥ − ≥⎜ ⎟
⎝ ⎠

∫ ∫
∫ ∫

∵

Algorithm 1: BQP algorithm for Approximate TSP (Euclidian) assuming Gaussian
distribution on the tour-lengths

1. Input a graph over vertices and n ε
2. Set ()()O q neα = , and prepare αΨ
3. Read the wave and find out tour-length of the observed tour
4. Repeat Step and 2 3 ()2

2
()p nO
ε

 times

5. Return the tour with minimum tour-length

Prepare the wave αΨ with ()()O q nα = (as described in last section) and

read it to find a tour. If we repeat this procedure ()2

2
() ()p n r nO
ε

 times (is a

polynomial in n) with

()r n

α set as , then the probability that we do not get any
tour in

(())O q ne
ε neighborhood of the optimal tour-length in

2

2
() ()p n r n
ε

γ repetitions of the

experiment is:

2() ()
22

()
21

()

p n r n

r ne
p n

ε
γ

γε −⎛ ⎞
− <

⎝ ⎠
⎜ ⎟ .

Therefore, we get a tour in an ε neighborhood of the optimal tour with a

probability greater than ()
11 r neγ− . Hence, in time which is polynomial in and n 1

ε
 we

get a tour which within (1)ε+ times the optimal tour with very high probability.

Oracle Algorithm and implementation—In the previous section, the assumption that
the tours of a randomly generated Euclidean TSP instance in a unit square have a
Gaussian distribution helped us to solve the problem efficiently. Now, we consider
the question of whether we can solve TSP efficiently if we have an oracle that can
give us information about the possible distribution of tour lengths in a particular TSP
instance. Assuming an oracle exists that can tell whether there are any tours with
lengths in the range [a,b) we give an efficient algorithm to solve Approximate TSP.

Assume that we have an equal superposition of all possible permutation of the
set { }{1 2 }… n, , , . We know that given a permutation it is possible for a classical Turing
Machine to verify in polynomial time whether that permutation is valid and has a tour
length in the range [i.e., the tour length is actually in the range [))a b, a b δ, + . So,
there exists a quantum Turing Machine which runs in polynomial time and solves this
problem. We dovetail this machine and the circuit that produces an equal

superposition of all permutations. This composite machine 1M puts a validity qubit in
state 1 if it is a valid tour with desired tour length, otherwise in state 0 . We create

another machine 2M which puts its qubit in the state
0 1

2
+

 if it is a valid tour with

desired tour length else puts it in the state
0 1

2
−

. We now consider the machine

M as described in the following algorithm:

Algorithm 2: PP oracle realization

1. Create two independent equal superpositions of all possible permutations.
2. Apply 1M to the first wave and apply 2M to the second wave.
3. Read the two validity bits of these machines using the measurement

operators{ }0 0 1 1, . Allow other qubits to decohere.
4. If both are return 0 false else tr . ue

Assume that there are valid tours out of a total of m N n= ! tours. Probability

that both qubits on reading give 0 is ()
2

1

21
m m
N Nm

N

⎛ ⎞
⎜
⎝

− −
− ×

⎟
⎠ . If there are no valid tours,

then M returns false with probability 1
2 else returns with probability true 1

2> .
Here with high probability the answer given by M is correct, but this probability can
not be directly amplified as the gap between the probabilities (when and)
decreases faster than inverse of any polynomial in n . So, this oracle is in the quantum
counterpart of classical PP.

0m = 1m =

We divide the range [2 2]n, into ε size ranges and number them serially

from 1 to 2 2n
ε

⎡ −
⎢⎣ ⎦

⎤
⎥ . We search linearly with δ ε= on these ranges and try to find

out the first range that has a valid tour in it. Let be the first range which has a valid
tour such that its tour-length is in its range. We start with an equal superposition of
all permutations. We dovetail a machine that finds the range to which a tour length
belongs. This results in an equal superposition of all permutations and its
corresponding range number in a separate register. Then as a final step, we project the

-th range and the decohered bits of the wave give us a permutation.

0i

0i

Since no bin with index less than has a tour, the optimal tour also lies in the
-th bin. The tour observed in the previous algorithm has length at most

0i

0i 2ε δ ε+ =
greater than the optimal tour. We know that every tour has tour length greater than 2 .
So, we get the result that the obtained tour’s length is less than ()1 ε+ times the
optimal tour-length. So, the obtained tour is an ()1 ε+ approximation of the optimal
tour.

Each iteration uses a call to the oracle and has ()1O time requirement and

there are ()nO ε iterations. So, we get an algorithm in the class , where X is the
class in which oracle lies. Our algorithm gives correct answers with high probability,

XP

however, a bounded error in probability cannot be guaranteed in polynomial time.
When interpreted in classical complexity theory, the result is in lines of Toda’s
theorem, but an interesting fact is that we can try to use more than different bases

(here we used

2

{ }0 , 1 and
0 1 0 1

,
2 2

⎧ + − ⎫
⎨
⎩ ⎭

⎬ bases sets in the oracle). This may

not be possible in the standard Quantum Turing Machine Model, but there may be a
bounded error algorithm in polynomial time for other quantum computation models.

Algorithm 3: General Algorithm to solve TSP

1. Divide the range [2 2]n, into ranges of size ε and number them from 1 to
2 2n
ε
−⎡ ⎤⎣ ⎦ .

2. Set δ ε=
3. Sequentially for each range from 1 to 2 2

2
n
ε
−⎡ ⎤⎣ ⎦ query the oracle with its search

range.
4. If i is the first index for which oracle returns then set . true 0i i=

5. Create the wave
is a permutation

#
τ

τ τ∑ , #τ is the range number in which τ ’s

tour-length lies.
6. Project the qubits storing range information on 0 0i i and let the qubits

storing the tour-length information decohere.
7. Return the τ obtained in the qubits storing the permutation information.

Conclusion—To the best of our knowledge, there is no quantum or classical algorithm
which guarantees bounded error performance in polynomial time for any generic class
of Traveling Salesman Problem. The Letter shows that if we assume a Gaussian
distribution on the tour-lengths of all possible Hamiltonian cycles, then we can solve
Approximate TSP in BQP resource bounds. Exact distribution of tour lengths may not
be known. Oracle algorithm presents a method where we use an oracle to answer
simple queries about Hamiltonian cycles’ properties. We present a PP algorithm to
realize an oracle which provides sufficient information to help solve Approximate
TSP. Although this means that the algorithm does not guarantee bounded error in
polynomial time, but it gives correct answer with high probability.

The results presented here can be considered amongst the few optimistic
results on TSP. The methodology presented here provides a general framework within
which one can use better oracles to obtain performance enhancement. There are a
couple of evident extensions of the work presented in this Letter. We can analyze the
effect of using multiple bases instead of two bases used in the oracle circuit presented
in this Letter. Otherwise one can study oracle realizations in other models of quantum
computations. If there are other models of quantum computation in which we can
efficiently solve Approximate TSP with bounded error, then NP problems could be
efficiently solved in those models of quantum computation.

1 L.K. Grover, Phys. Rev. Lett. 79, 325 (1997).
2 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Proc. FOCS p352
(1998).

3 C.H. Bennett, E. Bernstein, G. Brassard, and U.V. Vazirani, SIAM J. Comput. 26
1510 (1997).
4 H. Buhrman and R. deWolf, quant-ph/9811046 (1998).
5 P.W. Shor, Extra Volume ICM: Proc. Inter. Congress of Mathematicians, I, 467
(1998).
6 D. Deutsch and R. Jozsa, Proc. of Royal Society of London, A 439, 553 (1992).
7 A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D.A. Spielman,
Proceedings of the 35th ACM symposium on Theory of computing, 59-68 (2003).
8 E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy-Kan, and D.B. Shmoys, The Travelling
Salesman Problem (John Wiley & Sons, 1985).
9 N. Christofides, Algorithms and Complexity: New Directions and Recent Results,
page 441, Academic Press, 1976.
10 S. Arora, Journal of the ACM, 45, 753 (1998).
11 E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, quant-ph/0001106.
12 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, quant-
ph/0104129.
13 T. Hogg, Phys. Rev. A, 61, 052311 (2000).
14 T. Hogg, Phys. Rev. A, 67, 022314 (2003).
15 T. Hogg and D. Portnov, Quantum optimization, Information Sciences, 128, 181
(2000).
16 Ethan Bernstein and Umesh Vazirani, SIAM J. Comput. 26, 1411 (1997).
17 D. Goswami, Phys. Rev. Lett. 88, 177901 (2002).

